I-n-Coherent Rings, I-n-Semihereditary Rings, and I-Regular Rings
نویسندگان
چکیده
منابع مشابه
On n-coherent rings, n-hereditary rings and n-regular rings
We observe some new characterizations of $n$-presented modules. Using the concepts of $(n,0)$-injectivity and $(n,0)$-flatness of modules, we also present some characterizations of right $n$-coherent rings, right $n$-hereditary rings, and right $n$-regular rings.
متن کاملon n-coherent rings, n-hereditary rings and n-regular rings
we observe some new characterizations of $n$-presented modules. using the concepts of $(n,0)$-injectivity and $(n,0)$-flatness of modules, we also present some characterizations of right $n$-coherent rings, right $n$-hereditary rings, and right $n$-regular rings.
متن کامل$n$-cocoherent rings, $n$-cosemihereditary rings and $n$-V-rings
Let $R$ be a ring, and let $n, d$ be non-negative integers. A right $R$-module $M$ is called $(n, d)$-projective if $Ext^{d+1}_R(M, A)=0$ for every $n$-copresented right $R$-module $A$. $R$ is called right $n$-cocoherent if every $n$-copresented right $R$-module is $(n+1)$-coprese-nted, it is called a right co-$(n,d)$-ring if every right $R$-module is $(n, d)$-projective. $R$...
متن کامل$n$-cocoherent rings, $n$-cosemihereditary rings and $n$-v-rings
let $r$ be a ring, and let $n, d$ be non-negative integers. a right $r$-module $m$ is called $(n, d)$-projective if $ext^{d+1}_r(m, a)=0$ for every $n$-copresented right $r$-module $a$. $r$ is called right $n$-cocoherent if every $n$-copresented right $r$-module is $(n+1)$-coprese-nted, it is called a right co-$(n,d)$-ring if every right $r$-module is $(n, d)$-projective. $r$ ...
متن کاملOn n-flat modules and n-Von Neumann regular rings
We show that each R-module is n-flat (resp., weakly n-flat) if and only if R is an (n,n− 1)-ring (resp., a weakly (n,n− 1)-ring). We also give a new characterization of n-von Neumann regular rings and a characterization of weak n-von Neumann regular rings for (CH)-rings and for local rings. Finally, we show that in a class of principal rings and a class of local Gaussian rings, a weak n-von Neu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ukrainian Mathematical Journal
سال: 2014
ISSN: 0041-5995,1573-9376
DOI: 10.1007/s11253-014-0978-8